Senter for psykofarmakologi
Farmakogenetiske analyser
Under finner du informasjon om CYP-screening og hvilke farmakogenetiske analyser som er aktuelle basert på sykdomskategori og legemidler. Nederst er det en oversikt over hele analyserepertoaret.

Informasjon om prøvetaking og oppbevaring finner du her.
- Screening -
CYP-screening er aktuelt ved oppstart eller bruk av legemidler som i vesentlig grad omsettes via enzymene CYP2C9, CYP2C19 eller CYP2D6, se liste her.
- Depresjon -
Venlafaksin er et antidepressivt legemiddel av typen selektive serotonin- og noradrenalin reopptakshemmer (SNRI). Venlafaksin hemmer også svakt dopaminopptaket. Legemidlet brukes i behandlingen av depresjon, angst og panikklidelse (1).
Venlafaksin metaboliseres til en aktiv metabolitt, O-demetylvenlafaksin, og til flere innaktive metabolitter. Både CYP2C19 og CYP2D6 er involvert i metabolismen av venlafaksin og metabolittene. CYP2D6 er hovedsakelig involvert i metabolisme av venlafaksin til den aktive metabolitten, mens nedbryting til ikke-aktive metabolitter går via CYP2C19 (og CYP3A4) (1,2). Manglende eller redusert enzymaktivitet via både CYP2C19 og CYP2D6 er forbundet med høy totalkonsentrasjon av venlafaksin og O-demetylvenlafaksin (3) og økt risiko for bivirkninger (2,4-7).
Referanser:
- Sangkuhl K et al. PharmGKB summary: venlafaxine pathway. Pharmacogenet Genomics 201; 24(1): 62-72.
- The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group (DPWG). Annotation of DPWG Guideline for venlafaxine and CYP2D6. https://www.pharmgkb.org/guidelineAnnotation/PA166104968.
- Kringen MK et al. The Influence of Combined CYP2D6 and CYP2C19 Genotypes on Venlafaxine and O-Desmethylvenlafaxine Concentrations in a Large Patient Cohort. J Clin Psychopharmacol 2020; 40(2): 137-144.
- Vinetti M et al. Severe acute cardiomyopathy associated with venlafaxine overdose and possible role of CYP2D6 and CYP2C19 polymorphisms. Clin Toxicol (Phila) 2011; 49(9): 865-9.
- Chua EW et al. Novel CYP2D6 and CYP2C19 variants identified in a patient with adverse reactions towards venlafaxine monotherapy and dual therapy with nortriptyline and fluoxetine. Pharmacogenet Genomics 2013; 23(9): 494-7.
- Garcia S et al. Palpitations and Asthenia Associated with Venlafaxine in a CYP2D6 Poor Metabolizer and CYP2C19 Intermediate Metabolizer. Case Rep Genet 2017: 6236714. doi: 10.1155/2017/6236714.
- Jornil J et al. A poor metabolizer of both CYP2C19 and CYP2D6 identified by mechanistic pharmacokinetic simulation in a fatal drug poisoning case involving venlafaxine. Forensic Sci Int 2013; 226(1-3): e26-31.
Betydning for bivirkninger og effekt av TCA.
Trisykliske antidepressiva (TCA) metaboliseres til aktiv metabolitt via CYP2C19 (unntak: Nortriptylin har ikke aktiv metabolitt). Både modersubstans og aktiv metabolitt brytes ned via CYP2D6, som dermed er viktigst for totalkonsentrasjonen av TCA. Pasienter som har redusert metabolisme via CYP2D6 får økt totalkonsentrasjon av TCA og økt risiko for bivirkninger. Ved redusert metabolisme via CYP2C19 kan pasienten få opphopning av modersubstansen. Motsatt vil pasienter som har økt enzymfunksjon i CYP2D6 og CYP2C19 få redusert serumkonsentrasjon og økt risiko for terapisvikt (1).
Analyse av CYP2D6 og CYP2C19 er aktuell ved oppstart eller ved bivirkninger/manglende effekt under behandling med TCA.
Referanse:
1. Hicks JK, Sangkuhl K et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants.: 2016 Update. Tilgjengelig via www.pharmgkb.org
Aktuelt ved redusert totalkonsentrasjon/redusert effekt.
Bupropion omdannes til aktiv metabolitt via CYP2B6. Pasienter som har redusert metabolisme via CYP2B6 får redusert dannelse av aktiv metabolitt og redusert totalkonsentrasjon av bupropion (1). Disse pasientene kan få mindre effekt enn man forventer utfra den dosen som gis. Analysen er aktuell ved oppstart eller under behandling med bupropion. Bupropion kan også monitoreres med serumkonsentrasjonsmålinger.
Referanse:
1. Høiseth G, Haslemo T et al. Effect of CYP2B6*6 on Steady-State Serum Concentrations of Bupropion and Hydroxybupropion in Psychiatric Patients: A Study Based on Therapeutic Drug Monitoring Data. Ther Drug Monit. 2015; 37(5): 589-93.
- Psykose -
Flere antipsykotika metaboliseres via CYP2D6. Dette gjelder følgende preparater: Aripiprazol (Abilify), brekspiprazol (Rxulti), haloperidol (Haldol), perfenazin (Trilafon), risperidon (Risperdal), sertindol (Serdolect) og zuklopentiksol (Cisordinol). Ved variantalleller som gir redusert metabolisme via CYP2D6, vil pasienter få økt serumkonsentrasjon og økt risiko for bivirkninger av disse antipsykotiske legemidlene. Ved duplikasjon av CYP2D6-genet vil pasienter få økt metabolisme og dermed lavere serumkonsentrasjon og risiko for terapisvikt.
Analyse av CYP2D6 er aktuelt ved oppstart eller under behandling med disse antipsykotiske legemidlene, spesielt ved mistanke om bivirkninger eller manglende effekt.
- Epilepsi -
- ADHD -
- Smerte -
Det er individuell variasjon i den smertelindrende effekten av opioider. Noe av denne variasjonen kan være genetisk betinget og relatert til OPRM1-genet som koder for µ-opioidreseptoren, COMT-enzymet og polymorfisme i CYP2D6 som metaboliserer noen opioider. I opioid-panelet analyseres OPRM1, COMT og CYP2D6, og det gis en felles tolkning av hvilken betydning pasientens genvarianter har for forventet effekt, og risiko for bivirkninger av opioider.
CYP2D6: Opioidene kodein og tramadol er prodrugs som omdannes via CYP2D6 til aktive metabolitter. Noen genvarianter av CYP2D6 kan gi tap av enzymaktivitet og manglende omdanning til aktiv metabolitt og dermed manglende effekt av disse opioidene. På den andre siden kan duplikasjon av CYP2D6-genet gi økt omdanning til aktiv metabolitt og økt risiko for bivirkninger/toksisitet av kodein og tramadol (1). Også oksykodon omdannes til en viss grad via CYP2D6 til en aktiv metabolitt. Men størstedelen av metabolismen går via CYP3A4, slik at varianter av CYP2D6 har mindre betydning for oksykodon. Øvrige opioider metaboliseres hovedsakelig via CYP3A4. Forekomsten av CYP2D6 med tap av funksjon («poor metaboliser», PM) er 5-10 % hos europeere, mens duplikasjon av CYP2D6 gir økt metabolisme som finnes hos 1-2 %.
OPRM1: En genvariant av OPRM1 (c.118 A>G) gir aminosyrebytte fra asparagin til aspartat (Asn40Asp), som igjen medfører endret funksjon av µ-opioidreseptoren. Pasienter som har G-varianten er i studier vist å ha mindre smertelindrende effekt av opioider, og kan trenge høyere doser for å oppnå smertelindring. Spesielt gjelder dette de som er homozygote med GG-genotype (2). Varianter av OPRM1-genet er hovedsakelig vist å ha betydning for dosebehovet ved akutt/postoperativ smertebehandling. Forekomsten av OPRM1 118A>G er ca. 16% hos europeere, 39% hos asiatere og 1% hos afrikanere.
I tillegg analyserer vi en langt sjeldnere variant, OPRM1 c.541 C>T, som gir aminosyreendring fra arginin til cystein i posisjon 181 (Arg181Cys). Denne endringen har stor klinisk konsekvens. Pasienter som har homozygot T/T-genotype har manglende funksjon av µ-opioidreseptoren, og er dermed svært vanskelige å smertelindre med opioider (3). De heterozygote (C/T) har sterkt nedsatt funksjon av reseptoren. Forekomsten av disse genotypene er estimert til henholdsvis 1 av 10000 og 1 av 100.
COMT: Enzymet COMT (catechol-O-methyltransferase) metaboliserer dopamin, adrenalin og noradrenalin. Dopamin påvirker regulering av µ-opioidreseptorer i hjernen. En vanlig genvariant av COMT, Val158Met (rs4680), er vist å påvirke aktiviteten til COMT-enzymet slik at dopaminmetabolismen endres. Endret dopaminmetabolisme medfører en endret regulering av µ-opioidreseptorer i hjernen (sensitivitet og antall) som igjen kan påvirke smertelindring. Pasienter som har G/G-varianten er vist å ha lavere respons på opioider enn pasienter med A/G eller A/A-varianten, og kan ha behov for høyere doser for å oppnå smertelindring (4).
I en ny systematisk gjennomgang gir CPIC (Clinical Pharmacogenetics Implementation Consortium) anbefaling for dosering av kodein og tramadol basert på CYP2D6-genotype, men ikke for OPRM1 og COMT (5). Det er imidlertid vist i metaanalyser at pasienter med GG-varianten av OPRM1 (c.118 A>G) har økt dosebehov sammenlignet med bærere av A-varianten (6,7). Betydning av genetisk variasjon i COMT-enzymet for effekt av opioider er mindre studert. I de to største studiene der betydning av genetisk variasjon i OPRM1 og COMT er undersøkt samlet, er det vist at COMT GG i kombinasjon med OPRM1 AG/GG er assosiert med høyere dosebehov enn COMT A-bærere og OPRM1 AA (8,9). Det er i hovedsak disse to studiene, samt metaanalysene for OPRM1, vi baserer oss på i våre vurderinger av opioidbehov basert på genotyper av OPRM1 og COMT.
Det er svært mange faktorer som har betydning for smertefølsomhet og effekt/manglende effekt av smertelindrende medisin. Toleranseutvikling utvikles etter kort tids bruk av opioider og er en hyppig årsak til at opioider «ikke virker». Ved slik bortfall av effekt over tid, og/eller behov for stadig høyere doser, er det ikke relevant med farmakogenetisk analyse.
Referanser:
1. Pharmacogenomic Knowledge Base (PharmGKB). CYP2D6. CYP2D6 - Clinical Annotations (pharmgkb.org), CYP2D6 - Clinical Annotations (pharmgkb.org).
2. Pharmacogenomic Knowledge Base (PharmGKB). OPRM1. OPRM1 - Clinical Annotations (pharmgkb.org)
3. Skorpen F et al. The rare Arg181Cys mutation in the μ opioid receptor can abolish opioid responses. Acta Anaesthesiol Scand 2016; 60(8): 1084-91.
4. Pharmacogenomic Knowledge Base (PharmGKB). COMT. COMT - Clinical Annotations (pharmgkb.org)
5. Crews KR et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, OPRM1, and COMT genotype and select opioid therapy. Clin Pharmacol Ther 2021 .Jan 2. doi: 10.1002/cpt.2149.
6. Hwang IC et al. OPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and meta-analysis. Anesthesiology. 2014; 121(4): 825-34.
7. Choi SW et al. Effects of Single Nucleotide Polymorphisms on Surgical and Postsurgical Opioid Requirements: A Systematic Review and Meta-Analysis. Clin J Pain. 2017 Dec;33(12):1117-1130.
8. Reyes-Gibby CC et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 2007 Jul; 130(1-2): 25-30.
9. Matic M et al. Advanced cancer pain: the search for genetic factors correlated with interindividual variability in opioid requirement. Pharmacogenomics 2017; 18(12): 1133-1142.
- Hjerte/kar -
Klopidogrel er et prodrug som metaboliseres til aktiv metabolitt via CYP2C19. Pasienter med ingen eller redusert enzymaktivitet i CYP2C19, får dårligere platehemmende effekt enn de med normalt fungerende enzym. Disse pasientene vil ha økt risiko for behandlingssvikt, altså ny trombose. Om lag 3-4 % av kaukasisk befolkning har genvarianter av CYP2C19 som medfører bortfall av enzymaktivitet, mens ca 30 % har redusert enzymaktivitet (kun ett mutert allel). Det finnes ikke monitoreringsmuligheter for vurdering av klopidogrelrespons, og svikt i behandlingsrespons vil først avdekkes ved ny trombose. Hos disse pasientene er CYP2C19-genotyping et godt verktøy for å avdekke hvorvidt de forventes å respondere på behandlingen (1).
Vi baserer våre anbefalinger på internasjonale kunnskapsoppsummeringer fra Clinical Pharmacogenetics Implementation Consortium (CPIC) (2) og The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group (DPWG). Sistnevnte gruppe har laget en retningslinje etter grundig gjennomgang av litteraturen for CYP2C19 og klopidogrel, som kan leses her (3). Kort oppsummert anbefales det at pasienter med manglende enzymaktivitet i CYP2C19 (poor metabolizer, PM) bruker annen platehemmende behandling enn klopidogrel. Pasienter med redusert enzymaktivitet (intermediate metabolizer, IM) bør også bruke annen platehemmende behandling, alternativt kan det vurderes å øke dosen av klopidogrel til 150 mg/dag (600 mg oppstartdose).
Statin-panel er aktuelt ved oppstart med statiner, eller ved muskelbivirkninger under statinbehandling. I Statin-panel analyseres genene CYP3A4, CYP3A5 og SLCO1B1. Sistnevnte gen koder for transportpumpen, OATP1B1, som sørger for opptak av statiner fra blodbanen til lever. Ved genvarianter som gir nedsatt funksjon av denne transportpumpen, vil mindre statiner transporteres over til lever, der det både virker og metaboliseres. Samtidig vil statinkonsentrasjonen i blodet øke og gi økt risiko for bivirkninger. Særlig gjelder dette statininduserte muskelbivirkninger (1).
Statiner påvirkes i ulik grad som følge av redusert funksjon i transportpumpen. Genotyper som gir redusert transportfunksjon (SLCO1B1 *1/*5 og *5/*5), tilsier økt risiko for bivirkninger av simvastatin. Risikoøkningen er mindre for atorva-, prava- og rosuvastatin, mens fluvastatin i liten grad påvirkes (1-4).
Genvarianter av enzymene CYP3A4 og CYP3A5, kan gi redusert eller økt nedbryting av noen statiner (simvatatin og atorvastatin), og kan dermed også påvirke serumkonsentrasjonen av disse (5,6). I tillegg har CYP2C9 betydning for nedbryting av fluvastatin (inkluderes kun ved SLCO1B1 *1/*5 eller *5/*5, fordi fluvastatin da er et alternativ) (1). I statin-panelet gis det en felles tolkning av nevnte CYP-enzymer i kombinasjon med transportpumpen, OATP1B1, med tanke på dosebehov og risiko for statinbivirkninger hos den enkelte pasient.
Referanser
- Cooper-DeHoff RM et al. The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for SLCO1B1, ABCG2, and CYP2C9 and statin-associated musculoskeletal symptoms. Clin Pharmacol Ther. Accepted feb. 2022.
- Pharmacogenomic Knowledge Base (PharmGKB). Annotation of DPWG Guideline for simvastatin and SLCO1B1. https://www.pharmgkb.org/guidelineAnnotation/PA166182844 (Aug. 2020)
- Pharmacogenomic Knowledge Base (PharmGKB). Annotation of DPWG Guideline for atorvastatin and SLCO1B1. https://www.pharmgkb.org/chemical/PA448500/guidelineAnnotation/PA166182843 (Aug 2020).
- Pharmacogenomic Knowledge Base (PharmGKB). Annotation of CPIC Guideline for simvastatin and SLCO1B1. https://www.pharmgkb.org/guidelineAnnotation/PA166105005 (Feb. 2022).
- Yee J et al. Association between CYP3A5 Polymorphism and Statin-Induced Adverse Events: A Systemic Review and Meta-Analysis. J Pers Med. 2021 Jul 19;11(7):677.
- Hirota T et al.An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins.Expert Opin Drug Metab Toxicol. 2020 Sep;16(9):809-822.
- Andre -
Metadon metaboliseres via flere CYP-enzymer, inkludert CYP2B6 (1). Genetisk variasjon i CYP2B6 har vist seg å ha betydning for metadoneksponering (2). Pasienter som har redusert eller manglende metabolisme via CYP2B6 får høyere serumkonsentrasjon av metadon og har økt risiko for bivirkninger, inkludert økt risiko for forlenget QT-tid. For anbefaling vedrørende EKG-monitorering, se preparatomtale/Felleskatalogtekst.
Det analyseres for to varianter av CYP2B6; *6 og *18. Analysen er aktuell hos pasienter som ligger høyt i serumspeil, eller som ledd i monitorering av risiko for bivirkninger, inkludert forlenget QT-tid.
Referanse:
1. UpToDate (via helsebiblioteket). Methadone: Drug information. (Lest 04.03.2021)
2. Kringen MK et al. Combined Effect of CYP2B6 Genotype and Other Candidate Genes on a Steady-State Serum Concentration of Methadone in Opioid Maintenance Treatment. Ther Drug Monit. 2017; 39(5): 550-555.
-Analyserepertoar-
Enzym/protein | Variantallel | Beskrivelse | Akkreditert analyse |
CYP2B6 | *6 *18 | Aminosyreforandring p.Gln172His, c.516G>T Aminosyreforandring p.Lys262Arg, c.785A>G Aminosyreforandring, p.Ile328Thr, c.983T>C | |
CYP2C9 | *2
*3 | Aminosyreforandring p.Arg144Cys, c.430C>T Aminosyreforandring p.Ile359Leu, c.1075A>C | A
A |
CYP2C19 | *2
*4
*17 | Spleisedefekt c.681G>A Prematurt stoppkodon c.636G>A Defekt startkodon c.1A>G Promoterforandring c.-806C>T | A
A
|
CYP2D6 | *3
*4
*5 *6
*9
*17
*41
Duplikasjon | Leserammeskifte c.775delA
Spleisedefekt c.506-1G>A Delesjon av CYP2D6 genet Leserammeskifte c.454delT Aminosyredelesjon p.Lys281del, c.841_843delAAG Aminosyreforandring p.Pro34Ser, c.100C>T Aminsyreforandring p.Thr107Ile, c.320C>T
Spleisedefekt c.985+39G>A
Duplikasjon av CYP2D6 genet | A
A
A A
A
A A
A
A |
CYP3A5 | *3 | Spleisedefekt c.219-237A>G | A |
CYP3A4 | *22 | Spleiseforandring c.522-191C>T | A |
CYP1A2 | *1F | Promoterforandring c.-9-154C>A | |
UGT1A4 | *3 | Aminosyreforandring p.Leu48Val, c.142T>G | |
SLCO1B1 | *5 | Aminosyreforandring p.Val174Ala, c.521T>C | A |
VKORC1 | *2 | mRNA forandring, c.174-136C>T | A |
SLC6A4 | Kort/lang (s/l) variant av 5-HTTLPR | 44 bp delesjon/insersjon | A |
OPRM1 | c.118A>G
c. 541C>T | Aminosyreforandring p.Asn40Asp, c.118A>G Aminosyreforandring p.Arg181Cys, c.541C>T | |
COMT | G>A | Aminosyreforandring p.Val158Met, c.472G>A | |
HLA-B | *58:01 | |